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SUMMARY

An extremely simple computational method is esgtablished. for
obtaining circulatory flows around given bodies to a high degree of
.accuracy for flows satisfying the linear pressure and specific—volume
equation of state. The method depends not on an integral equation but !
on the transformation fram the hodograph to the physical plene involving ‘
the determination of an arbitrary analytic function. The determination
of the arbitrary analytic function by elementary means results in a
close approximation of the given body.

INTRODUCTION

The real mathematical problem arising from the theory of compressible
fluids is the examination by the methods of function theory of the
solutions of the nonlinear first—order simultaneous partial differential
equations: )

fo = 2V
Py (1)
1

¢y =05 %

or of the nonlinear second—order partial differential eqiza:bions

(%)= + (*4y)y = ©

and

(:EL' wx)x ¥ (% wy)y =0
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vhere @ and V¥ are the potential and stream functions, respectively,
and x and y are the independent coordinates in the physical plane
of the position of a particle of the flow.

It has been well known for half a century that a change of the
independent variables from the physicel coordinates x and y to the
hodograph coordinates 6 and q transforms the nonlinear system to a
linear one, that is, equations (1) become

where
__4q
T2 p(a)
1 = M3(q)
Tpla) = ap(a)

p is the density, and M the Mach number. Various methods of functlon
theory have been established for the solutions of the linear hodograph
equations (references 1 to 4). In particular the theory of Z-monogenic
functions, which is essentially a generalization of the theory of
analytic functions (references 3 to 5), has been used with varied
success. Analytic functions and Z~monogenic functlons appear to have
strong qualitative similarities so that certain solutions of

equations (2) "correspond” to well-known anslytic functions.

Because of the difficulties encountered in attempting to solve
boundary—value problems for Z-monogenic functions, "approximate”
qualitative solutions may be obtained more simply by a method of
correspondence. The analogous boundary—value problem (the flow past
a given body) is obtained for incompressible flulds in the hodograph
plane, and the "corresponding" complex potentisl in terms of Z-monogenic
functions is then used as a solution to a qualitatively similar problem
(reference 6).

This procedure yields & solution in the hodograph plane, which in
general is not in desirable form. The transformation from the hodograph
to the physicel plane therefore becames of bagic importance. Use is
made of the transformation of Gelbart (reference T) which was also
ostablished by Lin and Germain (references 8 and 9). For the isentroplc
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. equation of state the trensformation has the differential form:

dz = 92—6@ +2 aqr) @)

Under the agsumption that the pressure and specific—volime’ relation is

& linear rela‘bion,l the hodograph equations of the flow, as in the
incompressible case, are essentially reduced to the Cauchy—Rilemann
equations, so that @ and ¥ in equation (3) are essentially harmonic
functions. This enables the transitional equation to be written in a
relatively simple form: T

e 1 [
p=2lp -3 [ AL o ()

where ¢ is the position vector in an auxiliary plans, G(¢) is the
camplex potential of the Incompressible fluld flow around a circle in
this plane, with or without circulation,  £(¢) is an arbitrary anslytic
function of §, and the bar over the integral term indicates the complex
conjugate. If ¢ +takes on the values at the points of a streamline of
a flow around the circle in the {—plane, equation (4) is the parametric
representation of a streamline in the physicael plane. The circle as a
streamline in the {—plane is transformed into the obstacle as a stream—
line in the z—planse.

Since for each analytic () there corresponds s campressible
flow and vice versa, it is therefore necessary only to determine £ §)
such that the circle in the {—plane maps into s given body in the z—plane
by means of equation (4) in order to solve the direct problem, that is,
to obtain the compressible fluid flow around a given body. This paper
does not attempt to glve an exact solution to this problem. The object
of the paper is to find an analytic. £(&) by elementary and simple means
such that equation (4) is a mapping of the circle onto the given body -
to a high degree of accuracy.

This 1s done by considering the following maximum—-minimum problem:
For |¢|=1R, to find an analytic £({) such that the maximm value of

1 2 |
£(¢) —%;f [fo(g at - a(t)

1Such an agsumption was first considered by Chaplygin (reference 10)
and later reconsidered by Kdrmén, Tsien, Bers, Gelbart, and others
(references 7 and 11 to 13).
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shall be a minimum, where (f) is the analytic function that maps the
exterior of the circle onto the exterior of the given body, the point
at infinity remaining fixed. The technique of this paper was less
specifically set forth in a paper by Bartnoff and Gelbart (reference 1k)
and consists in expanding each side of the equation

_1 [lewyl® .
2(£) u/—?'%i;)]"d;"‘”(“

in g power series in eit3 and solving for the coefficients of f£(f)

by equating the coefficlents of the terms with like powers of eia. The

simplicity of this procedure is obvious.

By setting up an integral equation and solving it by successive
spproximations Bers (reference 15).is able to obtain exact solutions.
Though the computations are not too long they sre many times longer
+than those presented in this paper.

This investigation was carried out at Syracuse University under
the sponsorship and with the financial assistance of the National
Advisory Committee for Aeronautics.

SYMBOLS
¢ potential fumction
¥ .stream function
X,y Cartesian coordinates in physical plane
Z complex variable in physical plane
¢ complex variable in auxiliary plane
W complex variable in disterted hodograph plane
q magnitude of velocity '
e direction of veloclity in physical plane
?_ velocity vector
:; magnitude of distorted veiocity
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£2(e),w(e)
o(t)

R

magnitude of velocity at infinity

velocity of undisturbed incompressible flow

pressure
density
speed of sound

ratio of gpecific heats

. Mach number

stream.Mach number

complex potential of flow around circle in {—plane

complex potential of compressible fluid flow

circulation of incompressible flow

angle of attack of incompressible flow around circle

angle of attack of compressible flow around airfoil

analytic functions

conformal mapping of exterior of circle onto exterior

of Joukowski profile
radius of circle in {-plane
variable between O and 2=x

constant in Joukowski mapping
auxiliary constants

congtants

functions of q defined by equations (2)

—- - e e e o e e e e = & & aan e



0,1 : as subscripts, particuler values of variables

] I ~with symbol, absolute value .

over term, complex conjugate

with symbol, total derivative

THE FUNDAMENTAL RELATIONS

WACA TN 2057

The four fundsmental laws governing the steady, two—dimensional,
irrotetional flow of an ideal fluld are: The equation of state,

p=k?

(5)

where p is .the pressure, £ the (iensity , 7 the ratio of the

specific heats, and k a constant; Bernoulli's equation,

2
a dp _
3 +L/) ) Constant

the continuity equation,

and the circulation equation,

curl (?1)= 0

(6)

(7N

- (8)

Of these yfour laws the latter two, the continuity equation and the
circulation equation, give rise to the potential function ¢, given by

af = q cos 6 dx + ¢ sin 6 dy

(9)

where q is the magnitude of the velocity .of a particle at the point x,y

of the flow and 6 1ts direction, and to the stream function YV,

by
d¥ = —pg sin 8 dx + pq cos 6 dy

glven

(10)
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From the fact that df and 4y are exact differentials it Ffollows
that

S ()

11

= 1 ,
%

Multiplying each side of equation (10) by % and adding to equation (9),

dz = Lze-(dgé + -’;- dqf) | (12)

Equation (12) is the mapping function from the hodograph plane to the
physical plane.

By differentiating equation (12) first with respect to 6 and the
result with respect to q and equating that with the differentiation
teken in the reverse order, the hodograph equations of the flow are
obtained from the real and the imaginary parts:

P =2y |
o e (13)

=—q & /3

From equations (5) and (6) the following relations are obtained:

a2=a02—7;l<12 (1k)

where a is the velocity of sound with a2 = %,

7 7

| 7 - l ) - l q. 7

2 2
a9

e e e rmapu b i 208 e 4 O AR o o B e e e ot e | gy et — e =
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L -
71 71
2 -2
7—1lg 7—1g
1 - =p. |1+ = 16
° =% 2 2 Po o o (16)
ag a
2
L&az.&-:—g-.d_pz q'2 (17)
a2 pda 2 _ 7 -1 q2
: 0 2

where the subscript zero indicates the stagnation state. It is
convenient to normalize the constants so that Po =8y = 1. This is

equivalent to introducing the dimensionless variables P /po and q /a0

From equation (17), equations (13) become

=9
(18)
2 -~
__1-—M
gy = og Yo
Upon replacing eguation (5) by
L 1
—p i (19)
? pl (9 pl)
equations (14) to (17) became
2_dp_ _ Kk
& =3 p2 (20)

P-P1=k(vl+q2——l-) ' - (21)

) Py
p2 = L o (22)
1+ q_2
: 2
- q
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From equations (22) and (23) 1t follows that

-
l___éii_. =1 (24)
p
Thus equations (18) become
¢6 = %Wq_
(25)
=P
, ¢q =-q VY

There is an elementary transformation that will reduce equations (25)
to the Cauchy-Riemann equat'%ons. By a change of the independent
variables from 6,q to 8,4, where

q
q =/ —_— (26)
Yo q\ll +q

and q, is the magnitude of the velocity at infinity » equations (25)
become ’

¢e = ‘l’aa
: (27)
a="% |
Afber the integration has been performed, equation (26) becomes
q = log ——— (28)
2
1+ \/l + q
where
1+ \’l + qwe
K = - (29)
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From equation (12),

qa 2 p 21
_efn 1 9_1.3;_;_)— (30)
2 Pa/ 2 \a pq
vhere £ =@ + 1y. From equations (28) and (22),
- iw _ A iv zg ’
dz ge @ oV al (31)
where w =0 + 1q and £ is an analytic function of w. Thus,

-, K iw _ 1. —iw
.2—21/76 a0 2Kfe ae | (32)

Tne function £ 1s the complex potential of a compressible flow
in the physical plane or in the hodograph plane, depending on in which
plane it is being considered. However, if @ 1is considered as a
function of w, it is analytic and represents the camplex potential
of an incompressible fluid flow in the w-plane.

Equation (32) will therefore remain invariant under any conformal
transformation w = w(f). By setting

2rt (£)

1og o1 (t) (33)

w(g) = =

equation (32) takes on the convenient form

[er(en®
- £(0) - hf et R
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vhere G(¢) = o[w(¢)] and f£(§) is an arbitrary analytic function
of . Since w =6 + 14, +the magnitude of the velocity of the com—
pressible fluid flow can be obtained from equations- (33) and (28), for

68 _EC Q) w v,
: 2 £1(£)” q(q‘”) ° (35)
and
[ /2]
1 - |6*/2e0) 2 (36)

Tt is clear from equation (36) that |G'/2f'| < 1.

It appears to be most convenient to fix G({) to be the camplex
potential of a uniform flow past a circle of radius R ‘'in the {~plane
with a constant circulation of magnitude I'; that is,

2
6(¢) = qi’w(é +RE—) -%%los% N & 10

and

' = )-I-T(q_i’ooR sin avi (38)

where ay 1s the angle of attack and 4y is the velocity at infinity
o -

of the incampressible fluld flow past the circle in the {-plane. If
mapping (34) is to keep the point at infinity fixed and is to be such
that g 1s to be bounded, then f£'({) must have the form

(o]

) |
£(0) =2 2, o #o (39)
n=0 { \

This paper deals only with flows of this type.

Thus, from equation (35), by determines the velocity of the flow

at infinity. It is easily verified that the proper choice of by

insures that the mapping of the circle fram the {—plane to the stream—
line in the z—plane will also be a closed curve. The other cosfficlents
of £'(¢), an& thus f£(f), may be so determined that the flow be past
a preassigned obstacis.

It is this procedure that 1s followed in this paper.
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THE DETERMINATION OF THE ARBITRARY ANAIYTIC FUNCTION £(t)

If the function £(£) has been Ffixed in eguation (34), then each
point in the (—plane exterior to the circle R is mapped into a point
in the z—plane such that- the velocity of the compressible flow at the
point z is given by formula (36) and the boundary of the
circle |t| =R goes into a closed streamline in the z—plane (assuming
by has been suitably chosen). Therefore, to solve the direct problem,

that is, to obtain a uniform flow past a preassigned body, one need only
determine f(f) such that the transformation in equation (34) transforms
the circle |{|=R into a preassigned shape. (It is assumed in this
paper that the conformal mapping of the exterlor of a circle onto the
exterior of any simple closed curve is given. See references 16 and 17.)

Because the left-hand side of equation (34) is not an analytic
function, the mapping of the circle onto the preassigned curve 1is not
identical, point by point, with the conformal mapping .of the circle onto
the preassigned curve. Denote the conformal mapping by o = w({). The
assumption of this paper, in ordeér to obtain a simple and highly accurate;
though not exact, means of obtaining f£({), 1is that the inverse images
of the two mappings, the conformal and the one given by equation (34),
of the same point on the:given curve subtend a small angle at the center

of the circle ¢ = Reis, 0 58 <2x. This is undoubtedly true for
airfoll shapes, as has been shown by the computations of this paper.
That it also is true for curves of circular shapes has been verified in
the paper by Bartnoff and Gelbart (reference 14).

On the basis of this assumption the maximum-value of

' 2 :
w0 - 8L o - u (10)

is small fé)i' ¢ = ReiS. By equabting the coefficients of like powers

of oi® in z(t) apd in o(t), and thus determining £(f), it is
".. apsumed that the terms neglected in this process will be small. This
has been verified for the cases chosen in this paper and 1n reference k4. -

The process here mentioned will now be applied to the case of a
symmetric Joukowski airfoil for a given angle of attack a and a flow
whose speed at infinity is 4q . The fact that a symmetric Jdoukowskil

airfoil is chosen instead of a general airfoll is by no means a necessary
restriction. The same method with the same simplicity can be applied
to all airfoil shapes.
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To- sat.isfy the Kutta—Joukowski condition at the trailing edge, the
' flow past the circle ¢ = Rel® with an angle of attack o or a
circulation : ‘

. T = —ll-ﬂ'qi’coR gin Q,i (}-l-l)
is given by
~1Q.
- Qs R2 - 4D + 1 .
G(¢) = % e %y -y ~ log QP—R—‘- . (k2)
g 1

The stagnation points on the circle occur at d = 0° and & = 180° + 2ay .
Teking the derivative of G({) and substituting equation (41) for T,

e'(¢) = q4 me"io.bfL 14 2m_:in e lizi _ (43)
’ te 1 2o 1 .
Squaring each side of equation (43),
N T AT I
where
Ay =1 )
Ay = lLiZRe:.LOLi sin oy
Ay = —1232621ai(l'+ 2 sinea.i) r (4h).
Ay = -41R3e> g1 oy
A = Rhehia’i
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: o
‘ b
Recell that £'(f) = > 2. Iet
n=0 5 -

4
=- B
i _- o
Hence
o0 B o0 b .
1= e < 2 (46)
<n=0 §I> <n=0 §n> :
so that
1= bOBO
- (57)
O=ano+v---+ban, n>0
Equations (U47) can be solved for B,:
= _1— -
Bo " %o
(48)

— 1
By = _"%'(anO +tee .' '_"ban—l)

For later use Bl and Bo in terms of the unknown constants bIl are

given:
b
Bl = -—...L—
b 2
0 . (49)
b b
B, = -2 L
D> Do
g 0 0
Now it is possible to write
2 )
G' —2ic.
l: (gﬂ =q 2q iz D L (50)

: f|(§) 1,0 =0 n gn
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where
=AgBy + ¢ o« + B ) (51)
Thus,
«/ Lo v(%g —qi,oo 2 1(ngt + Dl log § Z n+l (52)
' =l nE
and
£(6) = b_. g + Dol + by log ¢ er;l (53)
= )

On the circle ¢ = Reia,, equation (3%) becames

o .
. b .
z =D + bQRe-’Lzs + by logR + bl(ia) - n§—1 E%;Tl- e‘ma -

o: 2101 )
q. — —.
1, DyRe ™ °. D, log R — D, (18) — 2 n+1 o1n® (54)
. n=1 an .

- The J oﬁkowski transformation that maps the exterior of a circle of
radius R onto the exterior of an airfoil is given by

(R — ¢)2
£ — ¢

o(f) ==+ ¢ +

-2 2 n—1 '
er s> B . (59)
n=1 ¢

where € is the center of the circle that is ma.pped. onto a strip. On
the circle { = Re:18 equation (55) becomes

2 n—-1
(n(Reia) = —¢ + Ret® +Z (R =) ¢ o—dnd (56)
n=1 RE )
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Equating coefficients of like terms in eguations (54) and (56), the
following simultaneous equations for bn are obtained:

2 2:1.(11
qi’oo e —
-6 =b_y + Dby logR — n D, log R (57
21
q o L _
R = Rbg + T D, (58)
2ia
0 .0 L _
0 =" + A 5 (59)
@®@-9°__2_ e D (60)
R R 0
and
._ 2n- . b, . .
(R G) € = - Il+l’ n Z o (61)
Rn an
Since D_ is a function of by, by, ° ° s b only, equations (58),

(59), and (60) can be solved for by, by, and b,. Once these are
obtained, equation (57) can be trivially solved for b_;. Equation (61)

can also be trivially solved for b, n > 3. It remains then only to
solve equations (58), (59), and (60) for Do, bi, and bo.

Equation (59), it silould be yointed out, is the condition on bl

that the mapping of the circle ¢ = Ret® by equation (34) be a closed
curve.

Equations (58), (59), and (60) are definitely not linear equations
in b, or Dby But if, from equation (35), the value of L In
is substituted into the three equations they becoms linesr

end by, where Bp is the absolute value of by, that
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For the point at infinity equation (35) glives rise to the relation

. —ia.i
. 4, e
2 bO -
or
=i { ocx, —i oo—cn )
qi,«a:%boe (o) =.2F°oe ( i) (63)

where o is the angle of attack of the compressible fluid flow past the
airfoll, and '

. g ,
2
1+ \’l + q
[>+8
0<P<1 (65)
Since %Y and P are real, the argument of bo mist be a — a4,
s :
i a0y
or by = Boe ( ) Equation (63) then becomes
After substituting equation (66) and D = :_]-'- into eguation (60),
. - 'bo
o Lara)
by = «R — €)? — PPB R () (67)
Now
Dy = 4081 + ABg
- da . .
_ by _ LiRe 1 gin %1 (68)
.2 - by

0
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The substitution of this and equation (66) into equation (59) yields

by — PPe?1%, — 4iP?Rely sin oy = 0 (69)

The complex conjugate of equation (69) results in

by = Pze—Eid‘bl - hiPaRe—iaBo sin a; _ (70)

and by substituting equation (70) into equation (69), equation (69)
becomes ) )

by — B, + 1PRe B sin oy — 41P°Re'%B, sin @y =0 (T1)
Hence

l!-il’aReiu' sin oy :

1+P X
Proceeding as before,
Dy = AgBp + A9B1 + AZBg
A, —1 g
D, b 2 4iRe = 1b, sin «
= ——2— 4 L + L -

=2 =3 -2
'bo bo ’bo
2 “:1( 2

2R<e 1+ 2 8gin

ai) (73)
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The substitution of this as well as equations (72) and (6"{) into
equation (58) yields a linear equation in Bo:

1 m_ai)Re + P2 210('(R - e)2 + P‘!’Lﬁc’REei (Mi) -

16P6R2ei(arqi)ﬁo sinea

(1 + P2)2

716PhREei( a;—ai) Bo sinzai
2

14+ P

QPZRZB(')ei (smes) (1 + 2 sin2a1> : | (74)

Thus the solution for By can be written

2 _ pP2l%p _ )2

t (“"“1)32(1 T <2PISin P:1>2
+

(75)

In determining the coefficients of £({) it is desirable to do
gso in terms of q,, and «, which are to be considered as preassigned.

The quantity %y must then be considered as an unknown. The four
equations for BO’ by, 'b2', and a, are then equations (58), (59),
(60), and (63). Since Bo must be real, a; can be obtained by

setting the imaginary part of equation (75) equal to zero:

Im {Re ~ PPePi%R _ e)g:le—i(mi)} =0 (76)

e e e e e o e e S e ey o & mm ol et e e
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_or . '
-R® gin (a, - a.i) - PR — €)° sin (cc + a,i)= 0 (1D
Hence‘ |
sin (or. - a,i) _ _PQ(R _ 6?2 _ g (18)

sin (a. + a,i) R®
Tt is seen from equation (78) that Q “is positive.. Fram equation (78)

sin @y cos @ — cos .cr,1 gin o

sin ali cos a + CcOSs a,i sin o = Q' (79)
and.

: tan o, tan o .

1 . i .
Then for cci:
ten a; = %——i—g‘* tan @ ' (81)
where . |
2 . o
Q= [PRR-G)] <1 (82)

x
'é":
and o; 2@ Wien a=0, oy =0:

Since 0Sa< @i always has a solution between O and -g—

To obtain Db, 0 23, equation (61) is solved:

b = Aa-1ER- %2, =nZ3 ' (83)
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€ £ —¢

Finally,
ey . . 1 P =D
f(§)—b0+bl§- §—2-+n=§—%
I T~ ¢ T L R
0 ¢ §2 . n= ¢
b. b '
=p +2. 2, Rog)?fl 1 (8%)
0" ¢ §2 §2 (c_e)e
Also,
_ ‘ b, + (R =€) 2 )
£(6) = by + Bt + b, log { — ‘2 B —¢) (85)

where b_;, by, by, and 'b, are given by the equations (57), (75),
(72): and (67)° . . .

The fact that a Joukowski airfoil was chosen is in no way a limita—
tlon of the method. The same procedure could be followed with the same .

0
- n
simplicity for the conformal mapping function of(t) = ALt + E Al /§
i . n=0

of the exterior of a circle onto the exterior of an arbitrary aiz_'foil
shape, the point at infinity remaining fixed and the value of the
derivative at infinity being bounded. ‘

Ir nonsymmetric.J oukowskl airfoils are congidered, there is no
esgential change in the representation of b e Here, ¢ would be complex,

but at no poi/nt in the work has it been essential that ¢ Dbe real.

It should be remarked that the method of thig paper does not yield
an exact solution of the direct problem, but for practical purposes’
glves -a very good approximation to the exact solution. However, the
results obtained by this method are exact for the flow sround a .body
that can be computed readily and for which there ig a.precise mathe—
matical expression, such as the Joukowski airfoil used in the example.
Bers (reference 155 approaches this problem by msans of an integral
equation, which yields exact results whenever the iteration process 1s
valid, but the computations are much more involved.
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RESULTS OF COMPUTATIONS

Computations have been carried out for a given Joukowski profile
having the following geametric characteristics: ¢ = 0.15 and R = 1.15.
The constants of the transformstion for free—stream Mach numbers of 0.5
and 0.685 are given in table 1. The velocity distributions calculated
for the actual profiles for various angles of attack and the same two
values of the Mach number are given in tables 2 and 3 and plotted in
figures 1 and 2. Tables 4 and 5 present the pressure distributions
corresponding to the velocity distributions of tables 2 and 3.

. The velocity computed at the trailing edge ({ = R) is zero unavoid—
ably because G'(f) is zero at this point in the formula.

: IG'(Q)
q= £ (£) 2 (86)
e
- |2e(¢)

and f£'(t) is not zero. The exact f£(¢) which maps a circle onto a
Joukowski profile would have a zero derivative, but the one obtained by
the present method is only an approximation. Accordingly, the data
for' ® = 0° and 360° have been omitted from tables 2 to 5 and

figures 1 and 2.

ACCURACY

The methods of this paper are primarily for computational purposes
and are to be judged by the simplicity and accuracy of the computations.

| The body for which the exact flow is glven by the work of this
paper is represented by the equation

0 5 :
-ol)) +fay BO —? | (87)
) 13

where of g) is the mapping.function of the given body. The accuracy
then depends on how small the second term of -the right—hand side of
equation (87) is on the circle § = Reld®, The ordinates for the given
body and for the one obtained from equation (87) are given in table 6
for My, = 0.685 and @, = 0°; the corresponding profiles are given
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in figure 3. For this case, the series term in equation (87) is an
alternating series of decreasing terms which beginsg with the term

-involving D,. The error in neglecting the remainder is then always less

3 —
than its first term. The maximum value of the term involving Dl o did not
> v ll 5 l A .6 ’
exceed 0.0002. The sum E -—I—l% on ¢ =Re*® was computed and nowhere
n=2 nb

exceeded 0.022.

The mapping function f(f) +to be determined for a given flow arocund
a given body not only depends on the given body but also on the free—
stream velocity and the angle of attack. This implies that the body
obtained from mapping (87) varies slightly for different free—stream
flow, although o(f) remains fixed. )

In table 3 and figure 2 of the present paper and also in the paper
by Bers (reference 15) are date for the velocity distribution of the
flow around. a Joukowski airfoil for which € = O. 15, R = 1.15,

= 0.685, and oy = 20 o7t. Although a precise comparison cannot be

made since there is no precise way of fixing the points of comparison,
the two results appear to compare quite favorably.

Syracuse University
Syracuse, N. Y., October 27, 1947
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TABLE 1.— CONSTANTS OF THE TRANSFORMATION

M, = 0.5 gq_ = 0.57T74k; P = 0.2679; ¢ = 0.15; R = 1.15

@3

0° . 50 | 10° 15° - 20°
o o | 429t | 859t | 13031 | 18° 5
By 1.0976 | 1.093% | 1.1063 | 1.1243| 1.1431

‘,blllR 0.0000 | 0.0255 | 0.0515 | 6.0780 0.1048

|1+ | [R2 | 0.0783 | 0.0785| o.o79k | 0.0807| 0.0821

QY 4o 0.5881 | 0.5858 | 0.5928 | 0.602% | 0.6125

M, = 0.685; a, = o.9l+02; P =0.3963; € =0.15; R = 1.15

@y

. 0° 20 o1 50 10° 15°

o 0o° 2° 431 | "3% 56% | 70 syt | 11° 55t
Bo 1.2403 | 1.2390| 1.235L | 1.2619 | 1.2966

e R 0.0000 | 0.0k05| 0.0585 | 0.1190 | 0.1823

/32 0.1949 | 0.1946| 0.19%0 | 0.1982 | 0.2037

a 0.9831| 0.9820 0.9789 | 1.0002 | 1.0277
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TABLE 2.— VELOCITY DISTRIBUTION a/a FOR VARIOUS ANGLES OF ATTACK

[Me=0.5; € =0.15; R = 1.15]

N o° 5° 10° 15° 20°
10 0.875 0.871 0.867 10.855 0.840
20 .889 .895 .901 .902 .896
30 912 .926 9k .950 .954
40 943 .967 .991 1.009 1.021
50 98, 1.016 1.050 1.079 1.101
60 1.027 1.073 1.119 1.161 1.195
70 1.077 1.137 1.199 1.255 1.328
80 . 1.129 1.207 1.287 1.362. 1.430
g0 1.182 1.283 1.38 1.484 1.575

100 1.234 1.362 1.h92 1.621 1.743

110 1.281 1.443 1.611 1.777 1.941

120 1.319 1.526 1.7%1 - 1.960 2.179

130 1.342 . 1.608 1.887 2.177 2.478

140 1.339 - 1.684 2.054 2.449 2.87h

150 1.285 1,744 2.249 2.809 3.4k

160 1.126 1.7h49 2.458 3.297 k.332

170 T34 1.550 2.542 3.839 5.685

18 .000 875 1.955° 3.526 6.218

190 T34 .000 .T92 1.813 3.4k23

200 1.126 .560 .000 609 1.362

210 1.285 .852 431 .000 L67

220 1.339 i.o02 .67k 343 .000

230 1.342 1.077 .816 .553 .283

240 1.319 1.107 .989 ©.685 L1466

250" 1.281 1.110 .Okp .T68 587

260 1.234 " 1.096 .960 .817 .668

270 1.18 1.071 .961 .84l .720

280 1.129 1.040 .950 .855 .753

290 1.077 1.005 934 .856 LTT7L

300 1.027 .970 914 .851 .T81

310 .98 .938 .89k . Bul T 787

320 .943 .910 .876 .837 «T91

330 912 .888 .86k 834 797

340 .889 .873 .858 .837 .809

350 .875 .869 .864 .850 .832
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TABLE 3.— VELOCTTY DISTRIBUTTON 9/9,, FOR VARIOUS ANGLES OF ATTACK

[M”= 0.685; ¢ =0.15; R = 1.15]

[« 4 .
NG 0° 20 o7t 50 10° 15°
10 0.876 0.870 0.866 0.858 0.843
20 .89k .897 .896 .90k . .907
30 .919 +929 -931 949 .963
ko .953 .970 .976 1.004 1.028
50 .996 1.022 1.029 1.069 1.106
60 1.045 1.079 1.092 1.146 1.197
T0 1.100 1.145 1.162 1.234 1.303
80 1.159 1.218 1.241 1.33% 1.425
90 1.219 1.295 1.326 1.445 1.566
100 1.279 1.375 1.416 1.569 1.727
110 1.333 1.456 1.510 1.707 1.913
120 1.377 1.535 1.605 1.860 2.133
130 1.403 1.608 1.700 2,034 2.401
140 1.400 1.666 1.789 2.235 2. T4
150 1.338 1.691 1.860 2475 3.212
160 1.157 1.627 1.864 - 2.746 3.902
170 TW731 1.320 ~1.637 2.908 4,875
180 .000 .583 .893 2.280 5.092
190 . .T31 .22k .000 .856 2.453
200 1.157 LTh1 <565 .000 .68l
210 1.338 1.013 .87k L2 .000
220 1.k00 1.146 1.036. .696 .358
230 1.k03 1.205 1.116 846 576
240 1.377 1.219 1.148 .931 Tl
250 1.333 1.207 1.149 OTT .800
260 1.279 1.179 1.132 .99k .851
270 1.219 1.1%0 1.102 .992 877
280 1.159 1.096 1.066 .979 .887
290 1.100 1.051 1.026 .959 .885
300 1.045 1.007 .987 .936 .878
310 .996 967 .952 .913 .868
320 .953 .932 .920 .893 .860
330 .919 .905 .896 .879 .856
340 .89k .885 .881 873 .859
350 .876 876 877 .878 873
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TABLE 4.— PRESSURE DISTRIBUTION p /po FOR VARTIOUS ANGLES OF ATTACK

[M,=0.5 €=0.15 R=1.15]

NG B 50 10° 15° 20°
10 1.120 1.119 1.118 1.115 1.111
20 1.12h4 1.126 1.127.. 1.127 1.126
30 1.130 1.134 1.138 1,14 1.142
ko 1.139 1.145 1.152 1.157 1.161
50 1.150 1.159 1.169 1.178 1.185
60 1.163 1.176 1.191 1.204 1.215
70 1.178 1.196 1.216 . 1.235 1.260
80 1.19% 1.219 1.246 . 1.272 1.297
90 1.211 1.244 1.281 1.317 1.352

100 1.228 1.272 1.320 1.370 1l.419

110 1.24) 1.302 1.366 1.433 1.502

120 1.257 1.333 1.418 1.510 1.607

130 1.265 1.365 1.479 1.606 1.746

140 1.264 1.395 1.551 " 1,732 1.938

150 | 1.245 1.419 1.639 1.905 2.226

160 1.193 l.h21 1.736 2.151 2.694

170 1.086 1.342 1.776 2,432 3.432

180 1.000 1.120 1.508 2.268 3.727

190 1.086 1.000 1.100 1.448 2,215

200 1.193 1.051 1.000 . 1.060 1.272

210 1.245 1.115 1.030 1.000 1.036

220 1.264 1.155 1.073 1.019 1.000

230 1.265 1.178 1.106 1.050 1.013

240 1.257 1.187 1.126 1.075 1.036

250 1.2k 1.188 1.138 1.09% 1.056

260 1.228 1.184 1.143 1.106 1.072

270 1.211 1.176 1.1hh 1.112 1.083

280 1.194 1.166 1.1h1 1.115 1.090

. 290 1.178 1.156 1.136 1.116 1.095

300 1.163 1.146 1.131 1.11% 1.097

310 1.150 1.137 1.125 1.112 1.098

320 1.139 1.130 1.121 1.111 1.099

330 1.130 1.124 1.118 1.110 1.101

340 1.124 1.120 1.116 1.111 1.104

350 1.120 1.119 1.118 1.11% 1.109
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PRESSURE DISTRIBUTION p/ P FOR VARTOUS ANGLES OF ATTACK

[M,=0.685; €=0.15 R=1.15]

3 ™ o° 20 o7t 5° 10° - 15°
10 1.295 1.292 1.290 1.285 1.276
20 1.306 1.308 1.308 1.312 1.31%
30 1.322 1.328 1.329 1.340 1.349
4o -1.343 1.35% 1.357 1.375 1.391
50 1.370 1.387 1.391 1.518 1.443

- 60 1.402 1.hok 1.433 1.470 1.505
. T0 1.k439 1.469 1.481 1.532 1.582
80 1.k79 1.520 1.537 1.604 1.672
90 1.521 1.576 1.598 1.687 1.780°

100 1.564 1.635 1.665 1.782 1.907

110 "1.603 1.695 1.736 1.891 2.058

120 1.636 1.756 1.810 2,015 2.241

130 1.656 1.812 1.886 2.158 2.469

140 1.653 1.858 1.957 2.327 2.766

150 1.607 1.878 2.015 2.532 3.182

160 1477 1.827 2.018 2,769 3.802

170 1.213 1.504 1.836 2.911 k.692

180 1.000 1.140 1.306 2.365 4.891

190 1.213 1.022 1.000 1.283 2.51%

200 1477 1.219 1.133 - 1.000 1.189

210 1.607 1.381 . 1.294 1.083 1.000

220 1.653 1.%70 1.396 1.195 1.055

230 1.656 1.511 1.4k49 1.278 1.137

240 1.636 1.521 1.h71 1.329 1.204

250 1.603 .1.513 l.h72 1.358 1.251

260 1.564 1.493 1.460 1.369 1.281

270 i.521 1.466 1.4%0 1.368 1.296

280 1.479 1.436 1.416 1.359 . 1.302

290 1.439 1.406 1.390 1.346 1.301

300 1.h02 1.377 1.365 1.332 1.297

310 1.370 1.351 1.342 1.318 1.201

320 1.343 1.330 1.322 1.306 1.286

330 1.322 1.313 1.308 1.297 1.284

340 1.306 1.301 1.298 1.294 1.286

350 1.295 1.296 1.296 1.296 1.294
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. TABLE 6.~ THE J‘OUKOWSK[' AND ACTUAIL PROF]IZESJ'
E&m = 0.685; @ = OO:I

lJ'oukowski: Zy = X3 -I: iy
Zp =% + 1y,

Actual:

5 Xy X Ty Ia
0] 2.000 2.022 0.000 0.000
10 1.960 1.980 .001 .009
20 1.842 1.859 .008 .023
30 1.654 1.664 .025 045
)Mo} " l.ko7 1.409 .055 077
50 "1.11h 1.108 . .097 17
60 .788 <T75 AT 164
70 Lo J23 .200 211
80 .089 .068 251 .255
90 —.262 —.282 .295 291
100 —.599 -0.616 .326 314
110 -.915 -0.926 342 .325
120 -1.203 -1.205 .340 .320
130 —1.457 —1.452 .319 .300
140 —1.672 —1..660 .280 .266
150 -1.843 —1.827 .225 .219
160 . —1.968 -1.955 .158 - .160
170 2,04k —2.038 .081 .086
180 —2.069 ~-2.068 .000 .000
\-_\, NACA :;

31



NACA TN 2057

32

“QT'T =} 870 = 246°0 = "N ‘UOHNAINSIP KI00T9A: -'T 9ImBLd

0ze - 082 093 00 or 031 08

Tl [ T

anlin
A
BES=< IRENED> i
SN

<
\
T
RN

0’2

¥'e




33

NACA TN 2057

0g¢

T g7 = faT0 = @ ‘G890 = "IN "UOHNQLIISIP L}T00T9A -G &anaLd

“SEERE EEEEEEN
il
A
R
N 7
S EVIINVES 77

(4

91

0’3

72




NACA TN 2057

*soTiFoxd psmoxnof pue Tenjoe sy, -'g aansid

P e

Bsmoynof —
B0y —— :
Temoy -

£y

3k

NACA-Langley - 3-8-50 - 1050



